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ABSTRACT

As part of the international Greenland Sea Project, Woods Hole Oceanographic
Institute and Scripps Institution of Oceanography deployed a six transceiver ocean
acoustic tomography array to monitor ocean ventilation and circulation over the
1988-89 winter cooling season. A stochastic inverse method computer code which at-
tains a solution by minimizing mean square error is used to perform inversions of the
Greenland Sea tomography data.

A computer simulated ocean is used to evaluate various aspects of system perform-
ance. We first consider the advantages and problems associated with using a rav theorv
based algorithm to establish the forward problem for the Greenland Sea tomography
array. \ext, we made two adjustments to our inversion code and discuss the effects on
svstem performance. The first adjustment allows {or lavers of different thicknesses ir: the
inverse solution to increase the density of estimates in regions of interest. The second
adjustment allows the estimator to expect variability of the unknown field to decrease
exponentially with depth.

Our results show the ray theory based algorithm is an adequate method of modeling
ray paths in the Greenland Sea, but has limitations. Reliability of ray paths degrades
as launch angles become s..allower and if strong gradients and rapidly changing gradi-
ents in sound speed are present in the vicinity of the transceiver elements. We also find
varyving the thickness of lavers in the solution allows us to examine the more variable
upper ocean in greater detail without increasing computational effort. However, this
adjustment alone has the undesirable side effect of shifting svstem resolution towards the
lower ocean. This shift in resolution is offset by informing the estimator about the ver-
tical variability distribution of the unknown field. This a priori knowledge is
parameterized by the covariance function of the unknown field. Uncertainty in knowing
the true variability distribution affects model performance. The inverse solution is more
sensitive to underestimating than overestimating the true value of folding depth. The
model is also more sensitive to both underestimation and overestimation at small true
folding depths.

A sct of Greenland Sea data between one tranceiver pair was processed by Woods
Hole Oceanographic Institute. Although only three groups of eigenrays are involved,

initial inversion results indicate the estimator detects seasonal changes and synoptic scale




events occurring at time scales greater than 20 davs, however, solutions show wide fluc-
tuations at time scales shorter than 20 davs.
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1. INTRODUCTION
A. OCEAN ACOUSTIC TOMOGRAPHY

Tomography is a method to remotely sense interior structures. It uses
electromagnetic, seismic. or sound waves to propagate through and probe relatively
transparent media. For example, x-rays are commonly used in medical computer as-
sisted tomography (CAT) scans and seismic waves induced by surface sources are used
to study the interior of the earth (Backus and Gilbert,1967). Using analagous methods,
Munk and Wunsch (1979) introduced ocean acoustic tomography as a means of moni-
toring mesoscale fluctuations in ocean basins. Sound waves, which are sensitive to
density changes and currents but transit well through the ocean, gather information as
they encounter structures in the ocean interior. The data is received in the form of a
peturbated travel time {rom a source to a receiver. Using inverse techniques. the best
estimate as to what structure could result in the observed data is constructed.

Ocean acoustic tomography has scveral practical advantages over conventional
hydrographic study techniques, as cited by Chiu er al. (1987). The monitoring svstem
can be established as a semipermanent, continuous observing system which is not greatly
afTected by weather. It has high temporal resolution and can cover an extensive volume
of ocean simultaneously with only a few moorings, which reduces deplovment and
maintenance costs. Another advantage stated by Munk and Wunsch (1979) is that the
amount of additional information gained by each additional mooring increases more
rapidly than that gained by additional "spot” measurements since each mooring sets up
distinct new paths to each of the previously sct moorings. The gain in spot measure-
ments is more or less lincar with the number of instruments deploved.

Ocean acoustic tomography has been successfully demonstrated in a variety of ap-
plications since its introduction. Some examples include mapping mesocale midocean
eddy fields (Cornuelle et al, 1985), analvsis of planetary waves (Chiu er al,1987),
studving of ocean currents (DeFerrari er al., 1986), and surface wave analysis (Lynch ¢z
al..1987). 1t has also been chosen as a monitoring tool as part of the Greenland Sca
Project. Its application in the Greenland Sea is the impetus for this thesis.

The Greenland Sea is a well known contributor to world ocean ventilation. Several
conceptual theories have been developed to describe the process. but direct observations

of ventilation are scarce. The Greenland Sea Project was put forward by the Arctic




Occan Sciences Board to gain understanding of the processes relevant to deep con-
vection (Meincke.1989).

B. THE GREENLAND SEA PROJECT

The Greenland Sca Project (GSP) is a five vear (1987-1992). international scientific
studyv to understand the large scale, long term interactions of air, sea, and ice in the
Greenland Sea. The five key elements of the GSP are: (1) a study of air-sea-ice inter-
action, (2) a study of ocean ventilation. (3) a studv of ocean circulation and mixing, (4)
a study of atmospheric energetics, and (3) a study of biological processes. The role of
ocean acoustic tomography is to assist in the studies of ocean ventilation and circu-
lation. The array of transceiver moorings is designed to measure changes in the inte-
grated propertics of the Greenland Sea gyre through a winter cooling season and mayv
also provide valuable information in measuring the response of the wind driven gyre to
changes in the curl of the wind stress (Greenland Sea Science Planning Group. 1986).

A six transceiver arrav was successfully deploved in the Greenland Sea during
September-October. 1988. Figure 1 depicts the planned deplovment area and geometry
of the array. The moorings were shifted slightly from their original planned location to
accommodate for the rough bathvmetry found at the original Mooring 3 site. Mooring
2 was redeploved due to leakage of some O-ring seals. The redeploved mooring is dcs-
ignated here as Mooring 2a. The geodic coordinates of the moorings, the source depths,
and the receiver depths are given in Table 1. (Worchester and Howe, 1989).

C. THESIS OBJECTIVES

There are three basic objectives of this thesis. The first is to discuss the advantages
and problems of predicting ray paths between arrayv transceivers using an algoritm based
on ray theory. The Greenland Sca oflfers an acoustic environment which, in conjunction
with the array geometry, makes ray path determination challenging to model. Accurate
ray path prediction is an essential element of establishing the “forward” problem.
Chapter 111 contains our discussion on this topic.

The second objective is to develop an inversion code appropriate for application to
Greenland Sea tomography data. We begin with an inversion code originated by Chiu
and modificd by Kao (1989). The code. or estimator, treats the ocean as a volume which
has been subdivided into discrete boxes. The boxes have equal horizontal dimensions
and the vertical lavers of the ocean are equally spaced. An estimate of the unknown

variable is calculated for cach box. The estimator also treats the ocean as a statistically

(8]
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Table 1. TRANSCEIVER LOCATIONS

Mooring Lat-Long Position X-Y Position (km) [)S:;:fim giﬁﬁ'}:?:n
1 75°58.08° N.001°30.00" 1T’ 154.790 220.317 99.7 150.4
2 75°03.69' N, 000°40.25'E 224.683 119.080 94.0 143.7
2a 75°03.88".V.000°38.20'E 223.715 119.491 97.4 148.1
3 7170938 N.001°52.90" 1 148.972 18.146 96.0 146.7
4 74°28.90' N 0033730 1 33.270  60.938 94.6 117.7
5 7573427 N.006°07.70" 11 34.547 182.902 101.5 124.6
6 T3°03.600 N 002°58.00° 1 120,000 120.000 925 143.2

homogeneous volume. Therefore it expects variability (RMS values of the unknown
variable) in any region of the ocean to be the same.

We have made two fundamental adjustments to the inversion code and discuss how
they effect svstem performance. Qur first adjustment is to vary the laver thickness so
that there is a greater density of boxes in the region of interest. This adjustment allows
for more detail in the region of interest without increasing the computational cffort.
Our second adjustment tells the estimator to expect a depth dependent variability dis-
tribution of the unknown variable. In this way, the estimator produccs solutions which
are more realistic statistically. The effects of the adjustments on system performance is
evaluated by conducting inversions on computer simulated oceans with known statistical
parameters. The results of these studies are also contained in Chapter I11.

For convenience in coding. we use a Cartesian coordinate system. Based on ranges
computed for the WGSS84 spheroid (Worchester and Howe, 1989), we converted the
latitude and longitude positions to an XY plane which closely approximates the geodic
orientation. The plane is 240 km by 240 km and centered on Mooring 6. The XY co-
ordinates are included in Table 1. Though there is some slight distortion in the overall
shape of the arrav, the error between the geodic ranges and the model ranges is less than

15 meters along cach path. as shown in Table 2 below.




Table 2.

MOORING RANGES (KM) AND RANGE ERRORS (M):

Ranges

(above diagonal) are based on the WGSS4 spheroid, range errors (below
diagonal) are XY ranges minus spheroid ranges.

Mooring 1 2 2a 3 4 b 6
1 U 123.033 | 122,120 | 202.258 | 200.405 | 125922 | 106.179
2 -13 0 1.039 126.177 { 200.057 | 200.576 | 104.701
22 13 13 0 125.927 | 199.232 | 199.500 | 103.706
3 -3 -3 -1 0 123.367 | 200.594 | 105.896
4 1 -14 3 2 0 121.947 | 104.921
5 § -14 13 -1 4 0 106.109
6 -1 -14 10 -2 -2 -1 0

Our third objective is to test the inversion code with observed data derived from the
Grecnland Sea tomographic arrayv. The studies on system performance discussed earlier
are conducted using computer simulated oceans with known characteristics. However,
the simulated ocecans are limited in the scope to which thev can mimmick the actual
conditions found in the Greenland Sea. Using actual Greenland Sea travel time data is
the only way to determine if the model response will be realistic. Currently there is a set
of data derived [rom signals transmitted between Mooring 4 and Mooring 5 available for
input into our model. The data set was processed by Woods Hole Occanographic In-
stitute (WHOI). Though this will not enable us to form significant conclusions about
the array site from such a small data base, ingesting real data into our model is helpful
in preparing the inversion code for the complete data set when it becomes available.
Our results are discussed in Chapter IV,

To complete our study, we provide the following information. In Chapter 11, we
present an overview of the basis on which our svstem is developed. Here, the math-
ematical foundation of the tomographic “forward” and “inverse” problems is discussed.
Then in Chapter V, we summarize our final conclusions and make recommendations for
future improvements related to this work.




II. OVERVIEW OF ACOUSTIC TOMOGRAPHY PRINCIPLES

In general, the application of tomogrgaphy to monitoring the ocean interior is done
in two parts. In the “forward” problem, we establish a model describing the physical
relationship between the observed data and the unknown variables which are to be esti-
mated. We will cast the forward problem as a Fredholm Integral Equation of the First
Kind in the form

d=| gNs)ds+ ¢ i=12,..m 2.1
path

where 4, is the data accumulated along the i path, g(s) is the data kernel which contains
the physics and operates on the unknown, f{s) is the unknown structure which is to be
estimated, and ¢, is the experimental noise accumulated along the # path.

The “inverse” problem is to determinc a solution to the unknown structure which fits
the data. An undctermined problem. one generally finds many solutions that fit the data
and must choose an optimal solution based on some objective criteria. For the
Greenland Sca transceiver arrav, the observed data are travel times of sound energy
along reciprocal acoustic multipaths which “conncct” sources and receivers. From these
data, we can estimate both sound speed perturbations with respect to a reference ocean
(density tomography), and ocean currents (current tomography).

A. THE FORWARD PROBLEM

Sound propagation in the occan is a function of temperature, pressure, and salinity
as well as a function of the current ficld. For the forward problem, we need to determine
the acoustic multipaths which sound energy follows from source to receiver. To model
these “eigenrays”, we use an algorithm based on ray theory. Ray theory provides a
simple physical description of the acoustic multipaths and the modecling equations are
straightforward. We start with the eikonal equation,

[ VD(xg2) P = n(xg.z)? 2.2)

where @ is the acoustic phase defining a wave front and » is the index of refraction.
Following the example of Ziomek (1983). we neglect horizontal refraction so that the

predicted rav paths lie on a vertical plane passing through the source and recciver.




Following the derivation used by Kao (1989). and treating the reference ocean as a
motionless medium, we arrive at the Kev equation for modeling ray paths in the

Greenland Sea.

R T 2
2=2,+ _n(_:)_ 1 dR 2.3
€T 0= (cos@o) (2:3)
R,

where z is the depth of the ray at range R, 6 is the rayv path angle with respect to the

horizontal. and the subscript o indicates conditions at the acoustic source.
The speed of the wave front through the true ocean is affected by both the sound

speed and current structure along the path. Wec express this as

d .. t. e A
T clxyza) + Vixg.o,t)es (2.4)

where ¢ is sound speed, V is the ocean current ficld, and s is a unit vector tangent to the
ray path. s . and pointed in the direction of sound energy propagation. From Equation

(2.4). we can determine the sound travel time along an eigenray path.

r=| (—— )ds (2.5)
path \ c+Ves /

We further separate ¢ into the sum of sound speed in a reference ocean and sound speed

perturbations with respect to this reference,
c=c,+éc (2.6)

Travel time can also be separated into the sum of travel time along an eigenray in
a reference ocean and the perturbation in travel time due to eflects in the ocean not re-

presented by the reference conditions,
IT'=T,+6T (2.7)

Substituting Equations (2.6) and (2.7) into Equation (2.5), we have "




'1;,+ar=[ L U A (2.8)
¢ S5c+ Vs
Ypath LT s

P I+ c
Under the mild restriction that | dc+ Ves|<<|c| . we can neglect the higher order
terms of a Tavlor series expansion of the term in parenthesis and arrive at

T0+67‘=[ ‘ (l—i‘i’;o';s)ds | 2.9)

3
“path
In density tomography. which uses one way travel times. the effect of ocean currents

is much smaller than the ellects of temperature. pressure, and salinity, i.e.

[Ves|<<|édc]. Since we have defined 7, = —CI—-ds, Equation (2.9) reduces to the
Crath

linearized form

oT=| | _—7])(5(')(15 (2.10)
‘pa:h\ C;

In current tomography, we must consider reciprocul paths. The effects of temper-
ature, pressure, and salinitv are the samc in either direction whereas the eflects of the
current field will be opposite under these circumstances. Therefore, imbedded informa-
tion about the currents may be extracted by subtracting the two reciprocal path
equations.

Consider the the travel time for sound along a path indicated by = calculated from
Equation (2.9).

T0+5T==I —!—(1——"‘—1'."‘—"‘)(15 @.11)

and for its reciprocal path indicated by <=,




T(_,+67‘°=J‘ Ly fetles )ds (2.12)

¢
path \
Since Ves~=— Vs~ at all points on the paths. subtracting Equation (2.12) from

Equation (2.11) viclds a linearized expression for current,

—S
( ST =817 (\ V5™)ds (2.13)

Thus far, the forward model has treated travel time data onlv as noise [ree mcas-
urements. In practice. experimental noise corrupts the signal and contributes to the er-
ror in the estimates. Factors such as tidal forces which cause displacement of transceiver
elements and internal waves are sources of experimental noise. Signal processing is used
to minimize these effects.  Details of signal processing techniques used for ocean
tomography can be found in Spindel (1985).

Including experimental noise in our modcl, we now have expressions which relate

the unknown variables to practical. observable duta. For density tomography, we have

/ N

6T = (;‘- idelds + e (2.14)
o/
path
and for current tomography, we have
8T — 4T "1\ T A
(———2—‘———>= (7)(\ . $)ds + e; (2.15)
path '

The similarity of the data kernels, which contain the physics of the model, shows the

close relationship between the two arcas of tomography.




B. THE INVERSE PROBLEM
Once the forward problem has been established, we search for unknown structures
which fit the observed data. Since we cannot sufficiently sample the occan to have a
complete set of independent data, the problem is underdetermined, with an infinite
number of possible solutions that will fit the data. To reach a unique solution, we must
devise an estimator which imposes additional constraints on the system. Choosing an
estimator based on the Gauss-Markoff Theorem allows the use of statistical information
to evaluate svstem performance.
1. The Estimator
We approximate the continuous system in a discretized form. This allows us to
cast the problem into matrix algebra for straightforward implementation of the estimator
in a numerical computer. Applving the Gauss-Markoff Theorem (Liebelt,1967) and
following the works of Cornuelle er al. (1985) and Chiu et al. (1987), our criterion for the
“best” solution of the unknown structure is one that is linear with the data and has
minimal mean square crror with respect to the true solution. Additional contraints on
the system are imposed through the specification of an a priori covariance matrix.
Posing the forward problem in discretized form. we have

d=Af+e¢ (2.16)

where the m dimensional column vector, d. contains the data derived from travel times
of m resolvable eigenravs. The n dimensional column vector, f. is the unknown structure
to be estimated. The ocean has been divided into n discrete boxes, within each the un-
known variable, 8¢ or V. is assumed to be constant. In our treatment. the discrete boxes
have equal dimensions in the horizontal plane, forming squares. However, the vertical
dimension varies with depth, forming uniform lavers of diflercnt thicknesses. The ex-
perimental noisc. ¢, which contaminates the data along each ray path, is also m dimen-
sional. The linear operator matrix, A, has m x n dimensions. The rows of the operator
matrix are analagous to a set of data Kernels of the continuous case. They contain the
physics which relates the data and unknown ficlds.

From the Gauss-Markofl Theorem, the optimal estimate of an unknown pa-
rameter can be calculated from

[=CATC;'d (2.17)

where the covariance matrix of the total error, ¢. of the estimate is

10




C,=C; —(C,AT)AC AT + C)(CAT) (2.18)

The diagonal elements of C, are the minimum mean square errors of the estimate. C, is
the covariance matrix of experimental noise, which we assume is known, and C, is the
covariance matrix of the unknown variable. It is through C, that we insert a priori in-
formation in the estimator. To reach an optimal solution, we assume the unknown fields
have Gaussian distributions and are statistically homogeneous throughout each laver.
We express these conditions through a covariance function, G, . which is cast into matrix
form as C,. The covariance function is expressed as,

C ( ’ ’ ,) ( o ” ..) ex { < A.Y )2 + AJ‘ 2 + ( A: )2 (2 19)
r=o(x, v, 2 jolx”, 7, 2 expe = | [ = =20 '
[ ) p{ LX I‘y L‘-,

where the separation of two points in each dimension is given as

o

Ax=x"—x" Av=3"—)", and Az =" — 2, respectivelv. The dimensional correlational
lengths, L,. L,. and L, tell the estimator how well information at one point relates to
surrounding points in the system. It is optimal to use the true correlation lengths, but
the true values may not be well known. To avoid overconstraining the system, i.e. to
avoid correlating information which is not truly correlated, we can use conservatively
small values of L,. L, and L. We characterize the vertical variability distribution of the
unknown ficld through ¢, which is treated by the estimator as an exponentially decaving
function with depth, parameterized by a surface value and an e -folding depth. In each
layer, an average value based on this curve is used. With a priori knowledge in place,
the inversion code can gencrate a unique Jeast mean square error solution from observed
data as well as error bars and system resolution measures.
2. Measurement of Error

The total error in the estimate can be cast as two statistically independent terms:
bias, b= <j' > - f. and random error, Af =j - <j' > . The covariance of error is simply
the sum of its components,

C,=<bb">+C; (2.20)

3

where

C,; =C A'C'AC, : : (2.21)
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Following Chiu ez al. (1987) and Wiggins (1972). we apply a powerful tool called singular
value decomposition of matrices. The linear operator matrix, A, is scaled and factorized
into a diagonal matrix of eigenvalues, A, and two matrices of associated eigenvectors,
U and V such that,

C, 2AC

ol

1
2

=UAVT (2.22)
Each diagonal element of A. /. has two associated eigenvectors, y, and ¢, , which are the
i columns of U and V, respectivelv. The eigenvectors within U and V are sets of
orthogonal basis vectors in the data space and unknown parameter space, respectively.

Applving matrix decomposition as in Chiu er al. (1987), we now write the
covariances of total error and random error as

L L
C,=C L= VA + A)'AVT] ¢ (2.23)
and

L " 2 - ‘]—
C..=C 2LV + A )'AY I+ AY)'VT] 2 (2.29)
) {

Y
where 1 is an 7 x n identity matrix. We derive an expression for bias by taking the ex-
treme casc where all eigenvalucs approach infinity so that C,: aproaches zero. From
Equation (2.23) we have,

1 1
<bbT>= CAl - V\"T)Cj_f2

3. Measurement of Resolution
Besides a measure of error, we also evaluate system performance through its
ability to resolve ocean features. Continuing with singular value decomposition of ma-
trices, we obtain an expression for the optimal estimate in terms of eigenvalues,

1 ; ]
-—— A / T —_—
C =) ——wC dy (2.26)
- i+ 1
i=1
where & is the number of non-zero cigenvalues. Equation (2.26) shows the solution is a

weighted sum of eigenvectors where the eigenvalues control the weighting. The ex-




pression in parcnthesis represents the components of the data vector which has been
expanded into a lincar combination of weighted eigenvectors. As demonstrated by Chiu
et al. (1987), the /2 values are analagous to signal-to-noisc ratios for each component
of the expanded data vector. For /i?> > 1, signal dominates noise in that particular
component, and the reverse is true for /2 < < 1. From Equation (2.26) we see that the
effect of noise on the estimate is minimized by downweighting those components asso-
ciated with high noise levels.

We now define the resolution matrix, R, which has n x » dimensions,
R=VA( + AY)'AVT (2.27)

The i row of R is the resolution kernel of the i#* box in the discretized ocean. Substi-
tuting into Equation (2.23). we get

1

~
Py

1
C,=CAl-R)C

Ideally, if the resolution matrix is an identity matrix, the svstem has no error. In the
limit, as we approach the continuous case with complete and noise {ree data, the resol-
ution kernels approach delta functions and the system would be perfectly resolved. In
practice, howevcer, the resolution kernels have side lobes and amplitudes less than unity
along the diagonal. In Equation (2.28), the relationship between resolution and error is
linear. Therefore, we may use the resolution kernel pecak valuc as a simpic measure of
local resolution.

Another measure of svstem performance is a measure of the size of features that
can be adequately resolved by the svstem. Chiu er al. (1987) has defined scale meas-
urements called the horizontal and vertical minimum resolution lengths, I{ and 1, re-
spectively. Each represents the distance in the respective dimension within which one
half of the total energy of the i* resolution kernel is confined under noise free conditions.

They are calculated from the following expressions,

n 20 v e a
rix”, 3", 2%)
H(x' s 2) =2 ZAEL——E—- (2.29)
i=1 ¢
s rAx", 3, 27
I(x.y ') =2 ZA.Vz—"—l‘;i—— (2.30)

=1
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rAx 0, 27)
Pyt 2) =2 | ) Az (2.31)

where

E= er (2.32)

is the total energy of the i* resolution kernel and r? is the energy contained in the j* el-
ement of the ¢ resolution kernel. In three dimensional space, the center of the box as-
sociated with the /* diagonal element of R is located at (x', ", 2'), and the center of the
box associated with the j* element of the // resolution kernel is located at (x”, 3", z7) .
Thus, Ax. Ay, and Ar are the separation distances in each dimension, respectively, be-
tween these locations. A significant strength of measuring svstem performance this way
is that the RMS crror and resolution do not depend on the available data. Instead, error
and resolution can be determined once the cigenray paths through the discretized ocean
are determined and the covariances of the unknown variable and random error are
known.

14




II. EIGENRAY PREDICTION AND INVERSION CODE
DEVELOPMENT

In this chapter, we first discuss eigenray path prediction for the Greenland Sea array.
Eigenrays are paths of acoustic signals extending between sources and receivers. Accu-
rate cigenray paths are needed to establish the forward problem. Errors in ray posi-
tioning and travel time calculations introduce crrors to the inverse solution. We then
discuss the modifications that have been made to the inversion code and their effects on

svstem performance.

A. EIGENRAY PATH PREDICTION

The construction of the linear opcrator is dependent on ray path information.
Knowing the amount of path length a rav has in each box is essential for the estimator
to determine the distribution of unknown structures. Collectively, these structures result
in a travel time perturbation datum as an acoustic signal passes from source to recceiver.
We use an algorithm based on rav theory to predict eigenray paths since ray theory
provides a simple physical description and the equations used in modcling are straight-
forward.

The rav trace algorithm is a fourth order Runge-Kutta numerical integration tech-
nique applied to Equation (2.4). The depth of cach rav is calculated at 1000 range steps.
Details of the fourth order Runge-Kutta method are given in Gerald (1989). As the ray
reaches significant points where the vertical sense of motion reverses, i.e. turning points
and surface reflections, the sign of the second term of Equation (3.1) reverses. (Since
we have not included bottom intereacting eigenrays in our forward problem. we will not
consider bottom reflections in our discussion here.) The Runge-Kutta method cannot
be applied through a step containing a significant point. Therefore, in the vicinity of a
turning point or a surface reflection. we apply a method which assumes a locally con-
stant sound speed gradient at depths near the significant point. Under constant gradient
conditions, the ray path is circular. T'rom Ugincius(1970), we have an expression for

curvature of the rav path,

x
[}
- ]._.

[etv—cos + g(2cosOv—1)] 3.1)

—
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where g, is the sound speed gradient and g, is the gradient of the medium speed. The
radius of curvature, 22, is just the reciprocal of x . Since we use a motionless reference

ocean in the forward problem. the expression for the radius of curvature simplifics to

R=——— (3.2)
g cost

which shows & is inversely related to the sound speed gradient with smaller radii re-
sulting from stronger gradients. In turning point cases, the ray is projected through the
step containing the point at a constant 2, then the Runge-Kutta integration continues.
In surface reflection cases, the ray is projected to the surface and continues downward
at the same ., however, for the downward path, the center of the circle for Z is sym-
metrically relocated about a vertical line extended through the point of reflection. As in
the turning point case. the Runge-Kutta integration continues at the completion of the
step until the next significant point is reached. Figure 2 shows examples of rayv tracing
through steps containing significant points.

To establish the forward problem. a reference ocean must be chosen. The associated
sound speed profile needs to closelv approximate the true conditions expected in the
Greenland Sea so that model predicted ravs can be associated with the data from the
tomographic arrav. When the transceiver moorings were deployed, sound speed profiles
were generated at cach site from CTD data. The profiles indicate a thin, warm laver of
relatively fresh water lies above a sharp density gradient. The sharp gradient extends
20-50 m below the top luver. Below the gradient, the water column approaches adiabatic
conditions at S00-1000 m, and is essentially adiabatic below 1000 m. For simplicity in
modeling. we treat the sound speed profile as a function of depth only. The reference
profile is based on a profile taken near the center of the array. The profile was taken
at the beginning of the data collection period on vearday 264 near Mooring 6 and is
shown in Figure 3. Yearday I is defined as 0] Jan 88 throughout this work. The pres-
ence of the sharp and rapidly changing gradients in this profile near the surface in con-
junction with the source and recciver locations proves to be challenging for our ray
tracing algorithm.

Under certain circumstances. small differences in sound speed profiles can result in
important output differences from our ray tracing algorithm. The top 40 meters of two
similar profiles with slightly different layer depths are shown in Figure 4. From 40 me-
ters to the bottom at 3000 meters, the profiles are identical. Either profile is represen-

tative of the conditions necar Mooring 6. We have depicted the deeper laver (D) case
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as a possible result of entrainment of five meters of the sharp gradient found in the
shallower laver (SL) case by mechanical means.

Typically. eigenravs occur in bundles of four distinct ravs duc to the near surface
location of the tranceiver elements and near half channel conditions of the Greenland
Sea. Two rays in the bundle are launched downward within a few tenths of a degree of
each other. The deeper ray arrives at the receiver from below while the shallower rav
reflects off the surface just prior to reaching the receiver. then arrives from above. The
other two rays in the bundle are launched upward at nearly the same magnitude launch
angle as the downward rays. Again, the ray launched at the stecper angle arrives from
below while the shallower ray reflects just before the receiver and arrives from above.
Since the magnitudes of the receiving angles are nearly the same for all four rays and the
bundles are several degrees apart, the bundles are identified by a nominal receiving an-
gles. To identifv ray paths as eigenravs, our algorithm uscs a tolerance of + 100 meters
vertical displacement from the receiver as a threshold. This threshold usually allows us
to identif\ all four eigenravs at some nominal receiving angle using 0.1° separation in
launch angle.

Eigenray paths between Mooring 4 and Mooring 5 with launch angles + 6 are
shown in Figure 5 where 7° < 6 < 14°. Figure 5a shows paths based on the DL profilc.
The SL case is shown in Figure Sb. With only a f:ve meter difference in laver depth,
several of the eigenravs predicted for the DL case are not predicted for the SL case. The
ravs of the SL case reach the top laver at lower angles and continue in the laver for
longer ranges before returning to the lower ocean. The ravs of the DL case reach the
surface laver at higher angles and have less path in the high speed water, which results
in a significantly diffcrent path from the SL case. Rays leaving a source at the same
launch angle. 6 = —9.03°, in the two different environments arc are shown in Figure Sc.
In the DL case, the ray is projected to pass less than 100 m from the receiver and is
considered to be an ecigenray. In the SL case, a ray with the same launch angle is
projected below the receiver by over 200 meters.

The selection of predicted eigenray paths used for the inversion of data from the
Greenland Sca depends on which paths best match the signal processing results of the
array data. The data we have received for paths between Mooring 4 and Mooring §
indicate, there are four distinct paths at a nominal receiving angle of + 13°, four paths
at = 10°, and the slowest arrival which occurs near 0°. Therefore we have chosen to
include the eight steepest eigenravs predicted in the DL case for our inversion of

Greenland Sca data. These ravs are at nominal angles that best match the true occan
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Figure 4.

Near Surface Sound Speed Profiles:  Both profiles arc representative of
the profile at Mooring 6.

data. In Chapter IV, we will continuc our discussion of the inversion of data from the
deployed array.

The presence of strong and rapidly changing gradicnts in our refcrence sound speed
profilc causes another problem for our ray tracing algorithm.

At relatively shallow
launch angles, typically with 0 between 4 5°, the algorithm fails while projecting the ray

through a turning point in the strong, ncar surface gradient. The cxact cause of failure

nceds to be fully investigated, but a preliminary look indicates a higher degree of nu-

merical accuracy is required and ray behavior in the vicinity of rapidly changing gradi-
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ents is not accurately depicted. Based on these results, we can expect the accuracy of
the ray tracing output to degrade at shallower launch angles, in the presence of high
sound speed gradients. and in the presence of rapidly changing gradients.

In conducting our studies involving the entire array, we select 101 eigenrays along
the 15 paths between moorings shown in Figure 6. The geometry of the array results in
three general tvpes of ray patterns: 1) Short paths between outer transceivers, 2) long
paths between outer tranceivers. and 3) paths between the outer tranceivers and the
center transceiver. An example of each is provided in Figure 7.

More eigenrayvs were predicted. but not used for three reasons. First, we have less
confidence in the accuracy of rav traccs of shallow eigenravs. Also, initial results indi-
cate that distinct travel time arrivals for shallower ray paths may not be available. and
finally, we fecl using these 101 cigenravs in our 500 box discretized ocean model is suf-
ficient to determine sensitivity cffects without taxing the limits of the microcomputer
uscd to conduct the experiments.

B. VERTICAL LAYERS AND RMS VARIABILITY DISTRIBUTION

The estimator arrives at a morc realistic solution if a priori information guides it
towards a statistically sensible solution. Since we generally expect to find more strongly
defined signatures of the unknown structures in the upper portion of the ocean volume,
we wish to focus the resolving capability of the estimator in this region. To accomplish
this, we make two adjustments to the inversion code. We vary the thickness of the ver-
tical lavers rather than using equally spaced lavers and we describe the vertical variability
distribution of unknown variable to the estimator through the variable’s covariance
matrix. Varving the thickness of lavers allows us to use more boxes of smaller size to
describe the region of greater variability without increasing the number of discrete boxes.
Thus, the computational effort to generate a solution is not significantly affected.

To show the effects of our adjustments on model performance, we use an ocean
volume which is 240 km x 240 km in the horizontal, and 3 km deep. The horizontal di-
mensions are evenly divided into ten 24 km segments. There are five vertical layers.
Starting at the surface. the layers arc 100 m, 200 m, 450 m, 750 m, and 1500 m thick,
respectively. Because of the uneven vertical spacing, the lower boxes generally contain
a larger portion of eigenray paths than if the model uscd evenly spaced lavers. As a re-
sult, the estimator places greater weight on the lower boxes when gencrating solutions.
Figure 8 depicts the resolution Kkernel peak values along a vertical slice using variable

thickness lavers (VTL). Tigure 9 shows the resolution kernel peak values for an equally
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Figure 6. Plan View of Array Geometry

spaced (EQS) discretized ocean having lavers of 600 m each. Both cases use the same
eigenray paths and the slices are taken parallel to the y-axis along the seventh increment
in X, that is for 14dkm < x < 168km (sce igure 6). These slices essentially parallel the
ray paths between Mooring | and Mooring 3. Both estimators assume a constant RMS
sound spced perturbation equal to 2 m's throughout the ocean.

The resolution kernel peak values are a measure of the resolving capabilitv of the
estimator at a particular location. They reflect the way the estimator views the data
collection process as an acoustic signal travels along an eigenray path. In the £QS ap-
proach, the estimator assumes that a greater portion of the signal was accumulated
above 1000 m since most of the cigenray paths are found in this region, however, this
approach uses fewer boxes to describe the structure of the upper occan. The VIL ap-
proach, in contrast, uses more boxces to describe the upper region and thus gives morc
detail on the solution there. However, the VI'L approach also shifts resolution towards

the lower ocean where the system has long paths passing through the thick lowest layer
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of boxes. The increased detail on system performance in the upper occan and the in-
creased number of estimated points provided by using smaller boxes arc characteristics
of the VTL approach which we wish to exploit since we expect greater variability in this
region. At the same time, we wish to limit the eflect of shifting system resolution to-
wards the lower ocean.

In the oceans described above, the estimators do not expect greater variability in the
unknown field in any particular region. This allows the estimator the freedom to gen-
erate solutions which show features of unusually high intensity in rcgions where we re-
alistically do not expect them. This occurs if the solution mects the requirements of the
estimator, that is, it [its the data and provides the lcast mean squarc crror. We can in-
form the estimator to anticipate greater RMS values of the unknown ficld in the upper
ocean through the covariance of the estimate. In this way the estimator expects little
travel time perturbation will accumulate in the acoustic wave as it passes through the
deeper ocean layers and greater variability is cncountered in the upper regions. As a
result, the resolution kernel peak values show an upward shift in modcl resolution, ofl-
sctting the downward shift caused by varving the thickness of layers. In Figure 10, we
show a vertical slice of the results of using the VTL approach with a vertical dependent
variability function. The vertical slice is the same as that used in Figures 8 and 9. In

our example, the RMS sound speed perturbation is modeled as an cxponentially decay-
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ing function with depth. An average value is then calculated for cach laver. For the
example shown in Figure 10, we have characterized the function by a surfuce RMS value
of 6 m's and an e-folding depth of 1000 m. The average value for the entire ocean using
this function is 1.9 m's, which closely approximates the 2 m's RMS dc¢ used for the ex-
ample shown in Figure 9.

Though we show an improvement in resolution in the upper region of the ocean. it
does not come without cost. As we improve resolution in a region, we also allow more
random noise to pass through the cstimator. The cffect can be seen in the standard de-
viation of the estimate, and thus a less reliable solution. The balance of higher resol-
ution and lower random ecrror is a choice which must be decided on the basis of
resolvable eigenrays paths, array gecometry, and the amount of experimental noise that
can be expected. Generally, we wish to increase system resolution with a minimal in-
crease in standard deviation of the estimate. Figure 11 shows the associated upward
shift in standard deviation of the estimate corresponding to an upward shift in system
resolution. The RMS dc distribution used for the examples shown in IFigures 11a and
11b are the same as that used for examples shown in Figures 9 and 10, respectively.
Typicaily, bias tends to dominate the total error of the system and the increase in ran-

dom crror is less important.
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In our modeling of the Greenland Sea. we assume the vanability of sound speed
perturbations and currents decrcase exponentially with depth, though cach variable may
be parameterized by a different folding depth. Reasonable surface RMS dc¢ values may
be estimated {rom sca surface temperature measurements derived from satellite data and
ship observations. Surface current variahility may be estimated from drifting buoy and
CTD stations at the array moorings. Since surface values may be more reliably deter-
mined. the focus of our sensitivity studv is placed on the effect of uncertainty in sub-
surface variability. The computer simulated occan on which inversions were performed
had a surface RMS dc of 6 m,s and a folding depth equal to 1000 m. The estimator is
provided with the same surface value and then we compare mode] performance using
folding depths of 500 m, 1000 m, and 3000 m. A similar sensitivity study is conducted
in current tomography. The surface RMS current for the computer generated ocean and
the estimator is 10 cm's. The occan was generated using a folding depth of 700 m.
System performance is evaluated using [olding depths 350 m, 700 m, and 2100 m in the
estimator. Figure 12 shows the depth dependent variability curves at different folding
depths.  The estimator and the simulated ocean both use an average value based on
these curves for cach layer of the discretized occan.

A longer folding depth used in the cstimator implies the system expects greater var-

iabilitv in the unknown ficld at depth. We define the half-depth, %o Z,, as the percent
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of the ocean measured from the surface which contains 0% of the integrated variability
over the ocean depth. [t is expressed as

zarn

00 Z = -OL- [1n(0.5 +0.5¢ /) ]100% (3.4)

(44

where fis the folding depth and z,., = —3000 m, is the bottom depth. Note that we have

defined f so that it is positive in our application here, that is f> 0 implies variability with
depth decreases. However, z,., is negative to be consistent with our upward pointing
positive z-axis with z = 0 m at the surface. It is interesting to note that the half-depth
depends only on the folding depth and ocean depth, but not on the surface value. This
allows us to make comparisons between the two areas of tomography.

In FFigure 13a. we show the top three layers of a simulated sound speed perturbation
field using the VTL approach. Figures 13b, 13c, and 13d show the corresponding esti-
mated fields based on folding depths of 500 m, 1000 m, and 3000 m, respectivelv. The
simulated field has %oZ. = 21.5%, or hall of the integrated variability is contained in
approximately the top fifth of the ocean. An estimator using a folding depth at 500 m
expects hall of the integrated variability to be contained in roughly the top 10%0 of the
ocean. As the acoustic signal passes through lower regions of the ocean, the signal en-
counters higher variability than the estimator expects. The estimator interprets this
“energetic” data as the result of more intense structures in the upper ocean than are truly
present. The solution is constructed accordingly. The opposite effect occurs when the
assumed folding depth is larger than the true value. With f = 3000 m. the estimator
assumes the ocean contains half the variability in the top 40% of the ocean and tends
to smooth the variability over greater depths than found in the true solution.

We have made the assumption that variability is an exponential distribution. Under
these conditions, the estimator is more sensitive to underestimating the folding depth
than overestimating it. Figure 14 shows the relationship between f'and %6Z,. The slope
of the curve indicates system sensitivity. For a given folding depth, the slope is greater
when the assumed value is less than the true folding depth, indicating the svstem’s in-
creased sensitivity to underestimation. Since the sensitivitv measured by %Z; is de-
pendent only on folding depth and ocean depth, we can also see from Figure 14 that
when true folding depths are small, the system is more sensitive to both underestimation
and overestimation than when the true folding depth is large.

For current tomography, we find a similar trend. Figure 15a shows a simulated

current field in the top threc lavers of the ocean. Figures 15b, 15¢, and 15d show the
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corresponding estimates based on folding depths of 350 m, 700 m, and 2100 m, respec-
tively. As in our density tomography, the cstimator is more sensitive to underestimating
the folding depth than overestimating.

These results of these sensitivity studies are based on the assumption that the true
variability distribution is an exponcntially decreasing function with depth. If the dis-
tribution is - ficantly different from this, our results may not apply, however, the
variation of the halldepth as a function of somc other applicable parameter may still

be a usclul measure of sensitivity.
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IV.  PRELIMINARY INVERSIONS USING GREENLAND SEA DATA

The discussions from the previous chapters have given us insight into the expected
system performance in the Greenland Sea environment. However, the use of simulated
oceans cannot explore every aspect of system performance. Only using actual data from
the tomographic array can disclose the extent of success the system will have as an ocean
monitoring tool.

At present, a set of travel time measurements from transmissions between Mooring
4 and Mooring 5 has been processed for our analysis by WHOI. Acoustic signals were
transnutted six times a dayv on every third day starting in late September, 1988, and
ending in late July, 1989, covering the winter cooling scason. The completc set of data
for transmissions from Mooring 4 to Mooring 5 is used in our preliminary studv. The
quality control “goodness estimates” of some data are, however, less than optimal. In
future studies, a criterion for the minimum acceptable goodness estimate may be set.
For our preliminary study, we use for each rav an average of all six transmissions to
determine the travel time of the day. The data indicate three bundles of eigenrays were
resolved from signal processing at WHOI. We will make reference to each bundle by the
magnitude of its nominal receiving angle. The bundles consist of four ravs at 13°, four
ravs at 10°, and one ray at 0°. Using a sound speed profile based on CTD taken near
the center mooring, our ray tracing algorithm predicts four eigenray paths near 13°and
four paths near 9° which we use for our data inversion. Since the algorithm fails at
shallow angles, the 0° rayv path is constructed by an alternate method. We trace an axial
path along the minimum sound specd axis, which is located approximately 30 m above
the source depth. The sound speeds at the source and receiver depths are less than .3
m:s greater than the mininium sound speed of the reference profile. We feel this is a
good approximation for the 0° ray since WHOI identified this arrival by using the last
signal peak which was very much bigger than noise (Pawlowicz,1991). To display our
results, we have taken a vertical slice in y-range as shown in figure 16a. This slice con-
tains Mooring 4 and Mooring 5. The selected eigenray paths, projected onto the vertical
slice, are shown in in figure 16b.

To evaluate system performance and analyse the data, we divide the ocean volume
into 500 boxes using the VTL lavering scheme described in Chapter 111.  Using this

scheme, the source at Mooring 4 is in the top ocean laver where 48km < x < 72km, while
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the receiver at Mooring 5 is in the second laver from the top where
168km < x < 192km We set the a priori knowledge for the estimator as shown in Table

1,0

Table 3. SYSTEM PARAMETERS

Assumed
Parameter Value
Surface RMS éc¢ 6ms
Folding Depth 1000 m
Random Noise I ms

Correlation Length (x.y) 30 km

Correlation Length (z) 300 m

Once the system parameters are established, the estimator’s performance may be evalu-
ated.

Figure 17 displays the resolution kernel peak values. The resolution of the svstem
is highest in the vicinity of the moorings since this is where the threc sets of rays con-
verge. The higher resolution in the upper 1000 meters is due to the exponential distrib-
ution of variability and path length contributions from both the 10° and 13° rays in this
region.

Another measure of system resolution is the minimum resolution length. As shown
in figure 18, the minimum resolution length in the v direction is about 60 km near the
top center portion of the vertical slice and near the source and recciver sites, and in-
creases rapidlv where there are few or no eigenray paths. The relatively low values are
due to the convergence of all three ray groups in these regions. Ocean features smaller
than the minimum resolution length are not adequately resolved and will appear
smoothed in the estimate. That is, we expect the estimator to generate less intense and
more spread out features than the true structure if the true solution has a length scale
less than the resolution length at its location. Since we are using a two point system
which has a north-south (v-direction) orientation, there is virtually no resolution of fea-
tures in the X-direction. As more data become available from other moorings, the esti-
mator will gain more information in all dimensions. Figure 19 shows the vertical
minimum resolution length which also tends to be lowest where the three groups of rays
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Figure 17. Resolution Kernel Peak Values for Greenland Sea Data Inversion: A

value of 1.0 implies a box is well resolved.

converge. llowever, it is interesting to note the unusually large minimumn resolution
length of 1700 m in the top center of the slice. It appears to be an anomalous feature
caused by the arbitrary choice of the the coordinate system. The exact cause of this fo-

cally high value, however, needs further investigation.
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The fact that the svstem has low resolving power is not surprising since there are
only three bundles of eigenrays involved. By using depth dependent variability in the
estimator, we have concentrated the resolution of the system in the upper ocean. Since
RMS &¢ varies with depth, we normalize the RMS error to show that the system mini-
mizes error in the upper ocean, the region of interest. Figure 20 depicts the RMS error
as a percent of the assumed variability in the laver.

Producing sound speed perturbation estimates with our estimator requires we con-
vert the travel time measurements from the array to travel time perturbations with re-
spect to a refercnce ocean. Once the sound speed perturbations have been estimated,
we can usc Equation (2.6) to determine an cstimated sound speed ficld of the Greenland
Sca.

For each of the nine eigenrays identificd by W1101, a time avcraged value was cal-
culated. The corresponding travel time diflerences between the nine time averaged
Greenland Sca values and the ninc predicted cigenray arrivals based on ray theory range
from 200-300 milliscconds. The differences are largely due to structural differences be-
tween the model ocean used to predict our ray paths and the “time averaged” Greenland
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Figure 20. Percent RMS Error

Sea, however, model errors in mooring positioning and in travel time calculations from
our ray theory based algorithm may also contribute significantly to the differences.
Based on receiving angles and sound specd data taken at the mooring sites, we have a
high degree of confidence in the positioning of the ray paths within the discretized boxes.
Even in a worst case scenario, the 200-300 millisccond differences would imply less than
500 meter difTerences in corresponding path lengths over total path lengths in excess of
120 km. These dillerences will not aflcct the linear operator of the estimator greatly.
Errors in travel time calculations even as low as tens of milliseconds, however, may
contribute significant errors in the estimates since they are treated by the estimator as
part of the data. The scale of §7 in the Greenland Sea is on the order of tens of milli-
seconds, based on diffcrences between daily travel times and the averaged travel time of
each of the rays. Though we cannot climinate these errors, we can scparate the errors
from our time serics of estimates by basing the travel time perturbations on the time
averaged occan. By choosing the time averaged occan as our refcrence state, we can
obscrve the response of the estimator over the winter cooling seasoi without superim-

posing the efTects of model travel time errors. The structure of the time averaged occan
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is not known, however, and may have range dependent features of interest. We can find
this structure with respect to the known sound speed structure used to predict our ray
paths by inverting the travel time diflerences between corresponding rays of the model
ocean and the time averaged data from the real ocean. From this information, we can
find the sound speed structure of the Greenland Sca.

Figure 21 shows the estimated dc field of the time averaged ocean referenced to the
ocean used to predict our ray paths. To produce this field, we increased the horizontal
correlation lengths of the estimator to 100 km based on the expectation that the time
averaged ocean is more highly correlated than any of the daily perturbation fields we
estimate. The solution shows a reasonable trend. The time averaged ocean is expected
to be cooler in the upper ocean since the ocean used for ray prediction is based on a
profile taken in September. a relatively warm time in our data collection period. How-
ever, the accuracy of the predicted structure is aflected by travel time errors from the ray
tracing algorithm and mooring positioning in the model. An independent source of data
is needed to verifv the extent of the eflects, but positioning errors may be reduced as
more data sets of the array are included.

Once the system produces the [irst estimated perturbation field, there is little in-
crease in computational effort to generate a time series of solutions using the same esti-
mator. To demonstrate the responsc of the estimator using the Greenland Sca data from
WHOI. we plot a time series of the average jc based on the top two model layers at the
position of Mooring 4 and Mooring 5. The time series are shown in Figures 22a and
23a respectively. The general “spikiness” of the plots is the result of having a two point
svstem which bases solutions on only three groups of eigenrayvs. It is difficult for the
estimator to preciselv position features with so little information. The features appear
to move more abruptly in sequential solutions than could be physically be expected, in-
dicating instability of the solutions. The inclusion of data from other moorings will in-
crease the estimator’s knowledge of the structures in the vicinity of Moorings 4 and §,
and the solutions are expected to show greater stability over time. However, even with
instability affecting the short term solution, there are indications of trends at longer time
scales detected. The seasonal cooling and warming through the fall, winter, spring and
early summer time {rame are evident at both moorings. Since sound speed is directly
related to temperature (Mackenzie,1981), éc decreases with winter cooling and increases
with spring and summer warming. Events at the 20-90 day scale are extracted [rom the

time series by applyving a time domain filter with cutofT frequency .05 cycles day at each
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Figure 21. Sound Speed Perturbations of the Time Averaged Ocean (m/s): The
sound speed structure of the time averaged ocean is the sum of this ficld
and the sound speed structure of the ocean used to predicted eigenray

paths.

of the point estimates. The time scries of the filtered solutions near Moorings 4 and §
are shown below their respective unfiltered versions in Figures 22b and 23b.
Environmental temperature data taken at Moorings 4 and 5 sites at a depth of 100
meters has been provided by WI101 and are displayed in Figures 22c and 23c. Com-
paring the filtered Sc cstimates to the respective temperature data provides evidence that
the two point tomographic system is detecting synoptic scale events. Mooring § p‘artic-

ularly shows good correlation between temperature and the local ¢ estimates. Of spe-
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cific intercst are the detection at Mooring § of the strong cooling event ncar yvearday 360

and the corresponding responses to warming and cooling [rom yearday 390 to about

vearday 560.

As an example of system output, a sequence of seven dc fields covering a three week

period from veardavs 462 to 480 at three day intervals is displayed in IFigures 24-30. The

temperature record at Mooring 5 indicated that a strong warming event followed by a

strong cooling event occurred during this period while a weaker pair of warming and

cooling events occurred near Mooring 4. The output of the estimator is consistent with
g g

the temperature data and reflects these trends.
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V. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we discussed the advantages and problems of using a ray theory based
algorithm to establish the forward problem, developed an inversion code which could
be applied to Greenland Sca data, and tested this code using available Greenland Sea
data. Here we offer some conclusions and recommendations for further study in this
area.

A. CONCLUSIONS

First, we looked at the advantages and problems associated with using an algorithm
based on ray theorv to model eigenrayv paths for the Greenland Sea tomography arrav.
Ray theory provides a simple depiction of eigenrays paths and the algorithm is coded
with uncomnplicated mathematics. However, CTD data from this area shows an acous-
tically difTicult enviroment may exist at least during part of the vear and degrade the
reliability of the predicted eigenray paths. Strong gradients and rapidly changing gradi-
ents in the vicinity of the transceiver elements can strongly affect model output. Rays
which are predicted to be turned in the gradient or near the sharp change in gradient arc
strong)y influenced by small changes in the sound speed profile in this region. These
significant differences reduce the reliability of the resulting ray path. The algorithm of-
ten (ails when predicting paths for rays launched at shallow angles. Rays launched at
steeper angles pass through these regions at greater angles and are less affected. These
ray paths are more reliable.

Data prepared by WHOI indicates resolvable eigenrays between Mooring 4 and
Mooring 5§ are at large enough launch angles that they are not turned in the sharp gra-
dient. Thus, our algorithm is adequate to model the forward problem in this environ-
ment.

In our inversion code development, we investigated the effects of using variable
thickness layers vice an equally spaced scheme to discretize the Greenland Sea for the
estimator. Using thinner lavers in the upper ocean and thicker layers in the lower occan,
we kept the total number of boxes the same. The advantages of using this scheme is that
it provides more solution detail in the region of interest for the same computational ef-
fort. However, since the thick lower lavers contain greater path length in this lavering
scheme, svstem resolution shifts toward the lower ocean. However, by specifiing a
depth dependent variability in the covariance of the unknown field, we tell the estimator
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to expect greater variability in the upper ocean. As a result of this modification, svstem
resolution shifts back towards the upper ocean. IFor our purposes, we have modeled the
depth dependent variability as an exponentially deceasing function with depth. 1f more
accurate information is known, it could just as easilv be used.

Since the true variability may not be known, we investigated model sensitivity to
uncertainty in variability distribution. Using an exponentially shaped variability dis-
tribution as our basis, we looked at the effects of underestimating and overestimating the
characteristic folding depth of the distribution. Defining the half-depth as the percent
of the ocean measured from the surface which contains 50% of the integrated variability,
we have an objective means of measuring sensitivity. The half-depth gives us an idea
of how the estimator is distributing variability in the ocean. We have shown the change
in half-depth per unit change in folding depth is alwayvs greater when the truc folding
depth is underestimated. We have also shown from the same relationship that at smaller
true folding depths, the model] is more sensitive to both underestimation and over esti-
mation. Half-depths relationships can be developed for other variability distributions
and applied in similar ways to mcasure model sensitivity.

Our inversion method was tested by using available data from the Greenland Sca
array as input to our model. The svstem uscd nine eigenray paths between the source
at Mooring 4 and the receiver at Mooring 3. The results of our preliminary application
of the model show evidence of detection of the seasonal cooling cvcle and detection of
synoptic scale events at time scales of 20-90 davs. The two point system also shows
unrealistically large fluctuations in the solutions at periods of less than 20 davs. This
indicates instablility of the solutions. however, we expect stability to increase as more
data becomes available from other moorings.

Our acoustic tomography code is ready for application to Greenland Sea data. The
estimator can provide concentrated estimates in the region of interest and allows for a
depth dependent variability distribution of the unknown variable. With these modifica-
tions, our model can usc tomographic data to monitor changes in ocean structure.

B. RECOMMENDATIONS

CTD data has shown that the near surface structure of the Greenland Sea is chal-
lenging to model acoustically. Though our ray theory based algorithm seems adequate
for our purposes here, the combination of the near surface gradients and transceiver lo-
cation make this algorithm less than idcal. However, the convenience of using a ray
theory bused algorithm to modcl the lower occan stills keeps it an attractive basis for




sound propagation prediction. We recommend that a more accuratec means of cstab-
lishing the forward problem in the Greenland Seca be investigated, perhaps using a hybrid
of ray theorv and normal modes.

Based on the promising results using just a two point system, continucd analysis of
the Greenland Sea using this code and data from the remaining 14 mooring paths of the
deployed array should vield useful estimates of ocean circulation and be able to detect
large scale convective events.
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